
django-filter Documentation

Alex Gaynor and others.

Jul 28, 2022

USER GUIDE

1 Installation 3
1.1 Requirements . 3

2 Getting Started 5
2.1 The model . 5
2.2 The filter . 5
2.3 The view . 9
2.4 The URL conf . 9
2.5 The template . 9
2.6 Generic view & configuration . 10

3 Integration with DRF 11
3.1 Quickstart . 11
3.2 Adding a FilterSet with filterset_class . 12
3.3 Using the filterset_fields shortcut . 12
3.4 Overriding FilterSet creation . 13
3.5 Schema Generation with Core API and Open API . 13
3.6 Crispy Forms . 15
3.7 Additional FilterSet Features . 15

4 Tips and Solutions 17
4.1 Common problems for declared filters . 17
4.2 Filtering by empty values . 18
4.3 Filtering by relative times . 21
4.4 Using initial values as defaults . 21
4.5 Adding model field help_text to filters . 22

5 Migration Guide 23
5.1 Enabling warnings . 23
5.2 Migrating to 2.0 . 23
5.3 Migrating to 1.0 . 25

6 FilterSet Options 29
6.1 Meta options . 29
6.2 Overriding FilterSet methods . 31

7 Filter Reference 33
7.1 Core Arguments . 33
7.2 Keyword-only Arguments . 33
7.3 ModelChoiceFilter and ModelMultipleChoiceFilter arguments . 35
7.4 Filters . 36

i

8 Field Reference 49
8.1 IsoDateTimeField . 49

9 Widget Reference 51
9.1 LinkWidget . 51
9.2 BooleanWidget . 51
9.3 CSVWidget . 51
9.4 RangeWidget . 51
9.5 SuffixedMultiWidget . 52

10 Settings Reference 53
10.1 FILTERS_DEFAULT_LOOKUP_EXPR . 53
10.2 FILTERS_EMPTY_CHOICE_LABEL . 53
10.3 FILTERS_NULL_CHOICE_LABEL . 53
10.4 FILTERS_NULL_CHOICE_VALUE . 53
10.5 FILTERS_DISABLE_HELP_TEXT . 54
10.6 FILTERS_VERBOSE_LOOKUPS . 54

11 Running the Test Suite 55
11.1 Clone the repository . 55
11.2 Set up the virtualenv . 55
11.3 Execute the test runner . 56
11.4 Test all supported versions . 56
11.5 Housekeeping . 56

Index 57

ii

django-filter Documentation

Django-filter is a generic, reusable application to alleviate writing some of the more mundane bits of view code. Specif-
ically, it allows users to filter down a queryset based on a model’s fields, displaying the form to let them do this.

USER GUIDE 1

django-filter Documentation

2 USER GUIDE

CHAPTER

ONE

INSTALLATION

Django-filter can be installed from PyPI with tools like pip:

$ pip install django-filter

Then add 'django_filters' to your INSTALLED_APPS.

INSTALLED_APPS = [
...
'django_filters',

]

1.1 Requirements

Django-filter requires a current version of Django and is tested against all supported versions of Python, as well as the
latest version of Django REST Framework (DRF).

3

https://www.djangoproject.com/download/#supported-versions
http://www.django-rest-framework.org/

django-filter Documentation

4 Chapter 1. Installation

CHAPTER

TWO

GETTING STARTED

Django-filter provides a simple way to filter down a queryset based on parameters a user provides. Say we have a
Product model and we want to let our users filter which products they see on a list page.

Note: If you’re using django-filter with Django Rest Framework, it’s recommended that you read the Integration with
DRF docs after this guide.

2.1 The model

Let’s start with our model:

from django.db import models

class Product(models.Model):
name = models.CharField(max_length=255)
price = models.DecimalField(max_digits=5, decimal_places=2)
description = models.TextField()
release_date = models.DateField()
manufacturer = models.ForeignKey(Manufacturer, on_delete=models.CASCADE)

2.2 The filter

We have a number of fields and we want to let our users filter based on the name, the price or the release_date. We
create a FilterSet for this:

import django_filters

class ProductFilter(django_filters.FilterSet):
name = django_filters.CharFilter(lookup_expr='iexact')

class Meta:
model = Product
fields = ['price', 'release_date']

As you can see this uses a very similar API to Django’s ModelForm. Just like with a ModelForm we can also override
filters, or add new ones using a declarative syntax.

5

django-filter Documentation

2.2.1 Declaring filters

The declarative syntax provides you with the most flexibility when creating filters, however it is fairly verbose. We’ll
use the below example to outline the core filter arguments on a FilterSet:

class ProductFilter(django_filters.FilterSet):
price = django_filters.NumberFilter()
price__gt = django_filters.NumberFilter(field_name='price', lookup_expr='gt')
price__lt = django_filters.NumberFilter(field_name='price', lookup_expr='lt')

release_year = django_filters.NumberFilter(field_name='release_date', lookup_expr=
→˓'year')
release_year__gt = django_filters.NumberFilter(field_name='release_date', lookup_

→˓expr='year__gt')
release_year__lt = django_filters.NumberFilter(field_name='release_date', lookup_

→˓expr='year__lt')

manufacturer__name = django_filters.CharFilter(lookup_expr='icontains')

class Meta:
model = Product
fields = ['price', 'release_date', 'manufacturer']

There are two main arguments for filters:

• field_name: The name of the model field to filter on. You can traverse “relationship paths” using Django’s __
syntax to filter fields on a related model. ex, manufacturer__name.

• lookup_expr: The field lookup to use when filtering. Django’s __ syntax can again be used in order to support
lookup transforms. ex, year__gte.

Together, the field field_name and lookup_expr represent a complete Django lookup expression. A detailed expla-
nation of lookup expressions is provided in Django’s lookup reference. django-filter supports expressions containing
both transforms and a final lookup.

2.2.2 Generating filters with Meta.fields

The FilterSet Meta class provides a fields attribute that can be used for easily specifying multiple filters without
significant code duplication. The base syntax supports a list of multiple field names:

import django_filters

class ProductFilter(django_filters.FilterSet):
class Meta:

model = Product
fields = ['price', 'release_date']

The above generates ‘exact’ lookups for both the ‘price’ and ‘release_date’ fields.

Additionally, a dictionary can be used to specify multiple lookup expressions for each field:

import django_filters

class ProductFilter(django_filters.FilterSet):
class Meta:

(continues on next page)

6 Chapter 2. Getting Started

https://docs.djangoproject.com/en/stable/ref/models/querysets/#field-lookups
https://docs.djangoproject.com/en/stable/ref/models/lookups/#module-django.db.models.lookups

django-filter Documentation

(continued from previous page)

model = Product
fields = {

'price': ['lt', 'gt'],
'release_date': ['exact', 'year__gt'],

}

The above would generate ‘price__lt’, ‘price__gt’, ‘release_date’, and ‘release_date__year__gt’ filters.

Note: The filter lookup type ‘exact’ is an implicit default and therefore never added to a filter name. In the above
example, the release date’s exact filter is ‘release_date’, not ‘release_date__exact’. This can be overridden by the
FILTERS_DEFAULT_LOOKUP_EXPR setting.

Items in the fields sequence in the Meta class may include “relationship paths” using Django’s __ syntax to filter on
fields on a related model:

class ProductFilter(django_filters.FilterSet):
class Meta:

model = Product
fields = ['manufacturer__country']

Overriding default filters

Like django.contrib.admin.ModelAdmin, it is possible to override default filters for all the models fields of the
same kind using filter_overrides on the Meta class:

class ProductFilter(django_filters.FilterSet):

class Meta:
model = Product
fields = {

'name': ['exact'],
'release_date': ['isnull'],

}
filter_overrides = {

models.CharField: {
'filter_class': django_filters.CharFilter,
'extra': lambda f: {

'lookup_expr': 'icontains',
},

},
models.BooleanField: {

'filter_class': django_filters.BooleanFilter,
'extra': lambda f: {

'widget': forms.CheckboxInput,
},

},
}

2.2. The filter 7

django-filter Documentation

2.2.3 Request-based filtering

The FilterSet may be initialized with an optional request argument. If a request object is passed, then you may
access the request during filtering. This allows you to filter by properties on the request, such as the currently logged-in
user or the Accepts-Languages header.

Note: It is not guaranteed that a request will be provided to the FilterSet instance. Any code depending on a request
should handle the None case.

Filtering the primary .qs

To filter the primary queryset by the request object, simply override the FilterSet.qs property. For example, you
could filter blog articles to only those that are published and those that are owned by the logged-in user (presumably
the author’s draft articles).

class ArticleFilter(django_filters.FilterSet):

class Meta:
model = Article
fields = [...]

@property
def qs(self):

parent = super().qs
author = getattr(self.request, 'user', None)

return parent.filter(is_published=True) \
| parent.filter(author=author)

Filtering the related queryset for ModelChoiceFilter

The queryset argument for ModelChoiceFilter and ModelMultipleChoiceFilter supports callable behavior.
If a callable is passed, it will be invoked with the request as its only argument. This allows you to perform the same
kinds of request-based filtering without resorting to overriding FilterSet.__init__.

def departments(request):
if request is None:

return Department.objects.none()

company = request.user.company
return company.department_set.all()

class EmployeeFilter(filters.FilterSet):
department = filters.ModelChoiceFilter(queryset=departments)
...

8 Chapter 2. Getting Started

django-filter Documentation

2.2.4 Customize filtering with Filter.method

You can control the behavior of a filter by specifying a method to perform filtering. View more information in the
method reference. Note that you may access the filterset’s properties, such as the request.

class F(django_filters.FilterSet):
username = CharFilter(method='my_custom_filter')

class Meta:
model = User
fields = ['username']

def my_custom_filter(self, queryset, name, value):
return queryset.filter(**{

name: value,
})

2.3 The view

Now we need to write a view:

def product_list(request):
f = ProductFilter(request.GET, queryset=Product.objects.all())
return render(request, 'my_app/template.html', {'filter': f})

If a queryset argument isn’t provided then all the items in the default manager of the model will be used.

If you want to access the filtered objects in your views, for example if you want to paginate them, you can do that. They
are in f.qs

2.4 The URL conf

We need a URL pattern to call the view:

path('list/', views.product_list, name="product-list")

2.5 The template

And lastly we need a template:

{% extends "base.html" %}

{% block content %}
<form method="get">

{{ filter.form.as_p }}
<input type="submit" />

</form>
{% for obj in filter.qs %}

(continues on next page)

2.3. The view 9

django-filter Documentation

(continued from previous page)

{{ obj.name }} - ${{ obj.price }}

{% endfor %}

{% endblock %}

And that’s all there is to it! The form attribute contains a normal Django form, and when we iterate over the
FilterSet.qs we get the objects in the resulting queryset.

2.6 Generic view & configuration

In addition to the above usage there is also a class-based generic view included in django-filter, which lives at
django_filters.views.FilterView. You must provide either a model or filterset_class argument, simi-
lar to ListView in Django itself:

urls.py
from django.urls import path
from django_filters.views import FilterView
from myapp.models import Product

urlpatterns = [
path("list/", FilterView.as_view(model=Product), name="product-list"),

]

If you provide a model optionally you can set filterset_fields to specify a list or a tuple of the fields that you want
to include for the automatic construction of the filterset class.

You must provide a template at <app>/<model>_filter.html which gets the context parameter filter. Addition-
ally, the context will contain object_list which holds the filtered queryset.

A legacy functional generic view is still included in django-filter, although its use is deprecated. It can be found at
django_filters.views.object_filter. You must provide the same arguments to it as the class based view:

urls.py
from django.urls import path
from django_filters.views import object_filter
from myapp.models import Product

urlpatterns = [
path("list/', object_filter, {'model': Product}, name="product-list"),

]

The needed template and its context variables will also be the same as the class-based view above.

10 Chapter 2. Getting Started

CHAPTER

THREE

INTEGRATION WITH DRF

Integration with Django Rest Framework is provided through a DRF-specific FilterSet and a filter backend. These
may be found in the rest_framework sub-package.

3.1 Quickstart

Using the new FilterSet simply requires changing the import path. Instead of importing from django_filters,
import from the rest_framework sub-package.

from django_filters import rest_framework as filters

class ProductFilter(filters.FilterSet):
...

Your view class will also need to add DjangoFilterBackend to the filter_backends.

from django_filters import rest_framework as filters

class ProductList(generics.ListAPIView):
queryset = Product.objects.all()
serializer_class = ProductSerializer
filter_backends = (filters.DjangoFilterBackend,)
filterset_fields = ('category', 'in_stock')

If you want to use the django-filter backend by default, add it to the DEFAULT_FILTER_BACKENDS setting.

settings.py
INSTALLED_APPS = [

...
'rest_framework',
'django_filters',

]

REST_FRAMEWORK = {
'DEFAULT_FILTER_BACKENDS': (

'django_filters.rest_framework.DjangoFilterBackend',
...

),
}

11

http://www.django-rest-framework.org/
http://www.django-rest-framework.org/api-guide/filtering/

django-filter Documentation

3.2 Adding a FilterSet with filterset_class

To enable filtering with a FilterSet, add it to the filterset_class parameter on your view class.

from rest_framework import generics
from django_filters import rest_framework as filters
from myapp import Product

class ProductFilter(filters.FilterSet):
min_price = filters.NumberFilter(field_name="price", lookup_expr='gte')
max_price = filters.NumberFilter(field_name="price", lookup_expr='lte')

class Meta:
model = Product
fields = ['category', 'in_stock']

class ProductList(generics.ListAPIView):
queryset = Product.objects.all()
serializer_class = ProductSerializer
filter_backends = (filters.DjangoFilterBackend,)
filterset_class = ProductFilter

3.3 Using the filterset_fields shortcut

You may bypass creating a FilterSet by instead adding filterset_fields to your view class. This is equivalent
to creating a FilterSet with just Meta.fields.

from rest_framework import generics
from django_filters import rest_framework as filters
from myapp import Product

class ProductList(generics.ListAPIView):
queryset = Product.objects.all()
filter_backends = (filters.DjangoFilterBackend,)
filterset_fields = ('category', 'in_stock')

Equivalent FilterSet:
class ProductFilter(filters.FilterSet):

class Meta:
model = Product
fields = ('category', 'in_stock')

Note that using filterset_fields and filterset_class together is not supported.

12 Chapter 3. Integration with DRF

django-filter Documentation

3.4 Overriding FilterSet creation

FilterSet creation can be customized by overriding the following methods on the backend class:

• .get_filterset(self, request, queryset, view)

• .get_filterset_class(self, view, queryset=None)

• .get_filterset_kwargs(self, request, queryset, view)

You can override these methods on a case-by-case basis for each view, creating unique backends, or these methods can
be used to write your own hooks to the view class.

class MyFilterBackend(filters.DjangoFilterBackend):
def get_filterset_kwargs(self, request, queryset, view):

kwargs = super().get_filterset_kwargs(request, queryset, view)

merge filterset kwargs provided by view class
if hasattr(view, 'get_filterset_kwargs'):

kwargs.update(view.get_filterset_kwargs())

return kwargs

class BookFilter(filters.FilterSet):
def __init__(self, *args, author=None, **kwargs):

super().__init__(*args, **kwargs)
do something w/ author

class BookViewSet(viewsets.ModelViewSet):
filter_backends = [MyFilterBackend]
filterset_class = BookFilter

def get_filterset_kwargs(self):
return {

'author': self.get_author(),
}

3.5 Schema Generation with Core API and Open API

The backend class integrates with DRF’s schema generation by implementing get_schema_fields() and
get_schema_operation_parameters(). get_schema_fields() is automatically enabled when Core API is in-
stalled. get_schema_operation_parameters() is always enabled for Open API (new since DRF 3.9). Schema gen-
eration usually functions seamlessly, however the implementation does expect to invoke the view’s get_queryset()
method. There is a caveat in that views are artificially constructed during schema generation, so the args and kwargs
attributes will be empty. If you depend on arguments parsed from the URL, you will need to handle their absence in
get_queryset().

For example, your get queryset method may look like this:

class IssueViewSet(views.ModelViewSet):
queryset = models.Issue.objects.all()

(continues on next page)

3.4. Overriding FilterSet creation 13

django-filter Documentation

(continued from previous page)

def get_project(self):
return models.Project.objects.get(pk=self.kwargs['project_id'])

def get_queryset(self):
project = self.get_project()

return self.queryset \
.filter(project=project) \
.filter(author=self.request.user)

This could be rewritten like so:

class IssueViewSet(views.ModelViewSet):
queryset = models.Issue.objects.all()

def get_project(self):
try:

return models.Project.objects.get(pk=self.kwargs['project_id'])
except models.Project.DoesNotExist:

return None

def get_queryset(self):
project = self.get_project()

if project is None:
return self.queryset.none()

return self.queryset \
.filter(project=project) \
.filter(author=self.request.user)

Or more simply as:

class IssueViewSet(views.ModelViewSet):
queryset = models.Issue.objects.all()

def get_queryset(self):
project_id may be None
return self.queryset \

.filter(project_id=self.kwargs.get('project_id')) \

.filter(author=self.request.user)

14 Chapter 3. Integration with DRF

django-filter Documentation

3.6 Crispy Forms

If you are using DRF’s browsable API or admin API you may also want to install django-crispy-forms, which will
enhance the presentation of the filter forms in HTML views, by allowing them to render Bootstrap 3 HTML. Note that
this isn’t actively supported, although pull requests for bug fixes are welcome.

pip install django-crispy-forms

With crispy forms installed and added to Django’s INSTALLED_APPS, the browsable API will present a filtering control
for DjangoFilterBackend, like so:

3.7 Additional FilterSet Features

The following features are specific to the rest framework FilterSet:

• BooleanFilter’s use the API-friendly BooleanWidget, which accepts lowercase true/false.

• Filter generation uses IsoDateTimeFilter for datetime model fields.

• Raised ValidationError’s are reraised as their DRF equivalent.

3.6. Crispy Forms 15

django-filter Documentation

16 Chapter 3. Integration with DRF

CHAPTER

FOUR

TIPS AND SOLUTIONS

4.1 Common problems for declared filters

Below are some of the common problems that occur when declaring filters. It is recommended that you read this as it
provides a more complete understanding of how filters work.

4.1.1 Filter field_name and lookup_expr not configured

While field_name and lookup_expr are optional, it is recommended that you specify them. By default, if
field_name is not specified, the filter’s name on the FilterSet class will be used. Additionally, lookup_expr
defaults to exact. The following is an example of a misconfigured price filter:

class ProductFilter(django_filters.FilterSet):
price__gt = django_filters.NumberFilter()

The filter instance will have a field name of price__gt and an exact lookup type. Under the hood, this will incorrectly
be resolved as:

Product.objects.filter(price__gt__exact=value)

The above will most likely generate a FieldError. The correct configuration would be:

class ProductFilter(django_filters.FilterSet):
price__gt = django_filters.NumberFilter(field_name='price', lookup_expr='gt')

4.1.2 Missing lookup_expr for text search filters

It’s quite common to forget to set the lookup expression for CharField and TextField and wonder why a search for
“foo” does not return results for “foobar”. This is because the default lookup type is exact, but you probably want to
perform an icontains lookup.

17

django-filter Documentation

4.1.3 Filter and lookup expression mismatch (in, range, isnull)

It’s not always appropriate to directly match a filter to its model field’s type, as some lookups expect different types
of values. This is a commonly found issue with in, range, and isnull lookups. Let’s look at the following product
model:

class Product(models.Model):
category = models.ForeignKey(Category, null=True)

Given that category is optional, it’s reasonable to want to enable a search for uncategorized products. The following
is an incorrectly configured isnull filter:

class ProductFilter(django_filters.FilterSet):
uncategorized = django_filters.NumberFilter(field_name='category', lookup_expr=

→˓'isnull')

So what’s the issue? While the underlying column type for category is an integer, isnull lookups expect a boolean
value. A NumberFilter however only validates numbers. Filters are not ‘expression aware’ and won’t change behavior
based on their lookup_expr. You should use filters that match the data type of the lookup expression instead of the
data type underlying the model field. The following would correctly allow you to search for both uncategorized products
and products for a set of categories:

class NumberInFilter(django_filters.BaseInFilter, django_filters.NumberFilter):
pass

class ProductFilter(django_filters.FilterSet):
categories = NumberInFilter(field_name='category', lookup_expr='in')
uncategorized = django_filters.BooleanFilter(field_name='category', lookup_expr=

→˓'isnull')

More info on constructing in and range csv filters.

4.2 Filtering by empty values

There are a number of cases where you may need to filter by empty or null values. The following are some common
solutions to these problems:

18 Chapter 4. Tips and Solutions

django-filter Documentation

4.2.1 Filtering by null values

As explained in the above “Filter and lookup expression mismatch” section, a common problem is how to correctly
filter by null values on a field.

Solution 1: Using a BooleanFilter with isnull

Using BooleanFilter with an isnull lookup is a builtin solution used by the FilterSet’s automatic filter generation.
To do this manually, simply add:

class ProductFilter(django_filters.FilterSet):
uncategorized = django_filters.BooleanFilter(field_name='category', lookup_expr=

→˓'isnull')

Note: Remember that the filter class is validating the input value. The underlying type of the mode field is not relevant
here.

You may also reverse the logic with the exclude parameter.

class ProductFilter(django_filters.FilterSet):
has_category = django_filters.BooleanFilter(field_name='category', lookup_expr=

→˓'isnull', exclude=True)

Solution 2: Using ChoiceFilter’s null choice

If you’re using a ChoiceFilter, you may also filter by null values by enabling the null_label parameter. More details
in the ChoiceFilter reference docs.

class ProductFilter(django_filters.FilterSet):
category = django_filters.ModelChoiceFilter(

field_name='category', lookup_expr='isnull',
null_label='Uncategorized',
queryset=Category.objects.all(),

)

Solution 3: Combining fields w/ MultiValueField

An alternative approach is to use Django’s MultiValueField to manually add in a BooleanField to handle null
values. Proof of concept: https://github.com/carltongibson/django-filter/issues/446

4.2. Filtering by empty values 19

https://github.com/carltongibson/django-filter/issues/446

django-filter Documentation

4.2.2 Filtering by an empty string

It’s not currently possible to filter by an empty string, since empty values are interpreted as a skipped filter.

GET http://localhost/api/my-model?myfield=

Solution 1: Magic values

You can override the filter() method of a filter class to specifically check for magic values. This is similar to the
ChoiceFilter’s null value handling.

GET http://localhost/api/my-model?myfield=EMPTY

class MyCharFilter(filters.CharFilter):
empty_value = 'EMPTY'

def filter(self, qs, value):
if value != self.empty_value:

return super().filter(qs, value)

qs = self.get_method(qs)(**{'%s__%s' % (self.field_name, self.lookup_expr): ""})
return qs.distinct() if self.distinct else qs

Solution 2: Empty string filter

It would also be possible to create an empty value filter that exhibits the same behavior as an isnull filter.

GET http://localhost/api/my-model?myfield__isempty=false

from django.core.validators import EMPTY_VALUES

class EmptyStringFilter(filters.BooleanFilter):
def filter(self, qs, value):

if value in EMPTY_VALUES:
return qs

exclude = self.exclude ^ (value is False)
method = qs.exclude if exclude else qs.filter

return method(**{self.field_name: ""})

class MyFilterSet(filters.FilterSet):
myfield__isempty = EmptyStringFilter(field_name='myfield')

class Meta:
model = MyModel
fields = []

20 Chapter 4. Tips and Solutions

http://localhost/api/my-model?myfield=
http://localhost/api/my-model?myfield=EMPTY
http://localhost/api/my-model?myfield__isempty=false

django-filter Documentation

4.3 Filtering by relative times

Given a model with a timestamp field, it may be useful to filter based on relative times. For instance, perhaps we want
to get data from the past n hours. This could be accomplished the with a NumberFilter that invokes a custom method.

from django.utils import timezone
from datetime import timedelta
...

class DataModel(models.Model):
time_stamp = models.DateTimeField()

class DataFilter(django_filters.FilterSet):
hours = django_filters.NumberFilter(

field_name='time_stamp', method='get_past_n_hours', label="Past n hours")

def get_past_n_hours(self, queryset, field_name, value):
time_threshold = timezone.now() - timedelta(hours=int(value))
return queryset.filter(time_stamp__gte=time_threshold)

class Meta:
model = DataModel
fields = ('hours',)

4.4 Using initial values as defaults

In pre-1.0 versions of django-filter, a filter field’s initial value was used as a default when no value was submitted.
This behavior was not officially supported and has since been removed.

Warning: It is recommended that you do NOT implement the below as it adversely affects usability. Django
forms don’t provide this behavior for a reason.

• Using initial values as defaults is inconsistent with the behavior of Django forms.

• Default values prevent users from filtering by empty values.

• Default values prevent users from skipping that filter.

If defaults are necessary though, the following should mimic the pre-1.0 behavior:

class BaseFilterSet(FilterSet):

def __init__(self, data=None, *args, **kwargs):
if filterset is bound, use initial values as defaults
if data is not None:

get a mutable copy of the QueryDict
data = data.copy()

for name, f in self.base_filters.items():
initial = f.extra.get('initial')

(continues on next page)

4.3. Filtering by relative times 21

django-filter Documentation

(continued from previous page)

filter param is either missing or empty, use initial as default
if not data.get(name) and initial:

data[name] = initial

super().__init__(data, *args, **kwargs)

4.5 Adding model field help_text to filters

Model field help_text is not used by filters by default. It can be added using a simple FilterSet base class:

class HelpfulFilterSet(django_filters.FilterSet):
@classmethod
def filter_for_field(cls, f, name, lookup_expr):

filter = super(HelpfulFilterSet, cls).filter_for_field(f, name, lookup_expr)
filter.extra['help_text'] = f.help_text
return filter

22 Chapter 4. Tips and Solutions

CHAPTER

FIVE

MIGRATION GUIDE

5.1 Enabling warnings

To view deprecations, you may need to enable warnings within Python. This can be achieved with either the -W flag,
or with PYTHONWARNINGS environment variable. For example, you could run your test suite like so:

$ python -W once manage.py test

The above would print all warnings once when they first occur. This is useful to know what violations exist in your code
(or occasionally in third party code). However, it only prints the last line of the stack trace. You can use the following
to raise the full exception instead:

$ python -W error manage.py test

5.2 Migrating to 2.0

This release contains several changes that break forwards compatibility. This includes removed features, renamed
attributes and arguments, and some reworked features. Due to the nature of these changes, it is not feasible to release a
fully forwards-compatible migration release. Please review the below list of changes and update your code accordingly.

5.2.1 Filter.lookup_expr list form removed (#851)

The Filter.lookup_expr argument no longer accepts None or a list of expressions. Use the LookupChoiceFilter
instead.

5.2.2 FilterSet filter_for_reverse_field removed (#915)

The filter_for_field method now generates filters for reverse relationships, removing the need for
filter_for_reverse_field. As a result, reverse relationships now also obey Meta.filter_overrides.

23

https://docs.python.org/3.6/using/cmdline.html#cmdoption-W
https://docs.python.org/3.6/using/cmdline.html#envvar-PYTHONWARNINGS

django-filter Documentation

5.2.3 View attributes renamed (#867)

Several view-related attributes have been renamed to improve consistency with other parts of the library. The following
classes are affected:

• DRF ViewSet.filter_class => filterset_class

• DRF ViewSet.filter_fields => filterset_fields

• DjangoFilterBackend.default_filter_set => filterset_base

• DjangoFilterBackend.get_filter_class() => get_filterset_class()

• FilterMixin.filter_fields => filterset_fields

5.2.4 FilterSet Meta.together option removed (#791)

The Meta.together has been deprecated in favor of userland implementations that override the cleanmethod of the
Meta.form class. An example will be provided in a “recipes” section in future docs.

5.2.5 FilterSet “strictness” handling moved to view (#788)

Strictness handling has been removed from the FilterSet and added to the view layer. As a result, the
FILTERS_STRICTNESS setting, Meta.strict option, and strict argument for the FilterSet initializer have all
been removed.

To alter strictness behavior, the appropriate view code should be overridden. More details will be provided in future
docs.

5.2.6 Filter.name renamed to Filter.field_name (#792)

The filter name has been renamed to field_name as a way to disambiguate the filter’s attribute name on its FilterSet
class from the field_name used for filtering purposes.

5.2.7 Filter.widget and Filter.required removed (#734)

The filter class no longer directly stores arguments passed to its form field. All arguments are located in the filter’s
.extra dict.

5.2.8 MultiWidget replaced by SuffixedMultiWidget (#770)

RangeWidget, DateRangeWidget, and LookupTypeWidget now inherit from SuffixedMultiWidget, changing
the suffixes of their query param names. For example, RangeWidget now has _min and _max suffixes instead of _0
and _1.

24 Chapter 5. Migration Guide

django-filter Documentation

5.2.9 Filters like RangeFilter, DateRangeFilter, DateTimeFromToRangeFilter...
(#770)

As they depend on MultiWidget, they need to be adjusted. In 1.0 release
parameters were provided using _0 and _1 as suffix``. For example, a parameter creation_date
using``DateRangeFilter`` will expect creation_date_after and creation_date_before instead of
creation_date_0 and creation_date_1.

5.3 Migrating to 1.0

The 1.0 release of django-filter introduces several API changes and refinements that break forwards compatibility.
Below is a list of deprecations and instructions on how to migrate to the 1.0 release. A forwards-compatible 0.15
release has also been created to help with migration. It is compatible with both the existing and new APIs and will
raise warnings for deprecated behavior.

5.3.1 MethodFilter and Filter.action replaced by Filter.method (#382)

The functionality of MethodFilter and Filter.action has been merged together and replaced by the Filter.
method parameter. The method parameter takes either a callable or the name of a FilterSet method. The signature
now takes an additional name argument that is the name of the model field to be filtered on.

Since method is now a parameter of all filters, inputs are validated and cleaned by its field_class. The function will
receive the cleaned value instead of the raw value.

0.x
class UserFilter(FilterSet):

last_login = filters.MethodFilter()

def filter_last_login(self, qs, value):
try to convert value to datetime, which may fail.
if value and looks_like_a_date(value):

value = datetime(value)

return qs.filter(last_login=value})

1.0
class UserFilter(FilterSet):

last_login = filters.CharFilter(method='filter_last_login')

def filter_last_login(self, qs, name, value):
return qs.filter(**{name: value})

5.3. Migrating to 1.0 25

django-filter Documentation

5.3.2 QuerySet methods are no longer proxied (#440)

The __iter__(), __len__(), __getitem__(), count() methods are no longer proxied from the queryset. To fix
this, call the methods on the .qs property itself.

f = UserFilter(request.GET, queryset=User.objects.all())

0.x
for obj in f:

...

1.0
for obj in f.qs:

...

5.3.3 Filters no longer autogenerated when Meta.fields is not specified (#450)

FilterSets had an undocumented behavior of autogenerating filters for all model fields when either Meta.fields was
not specified or when set to None. This can lead to potentially unsafe data or schema exposure and has been deprecated
in favor of explicitly setting Meta.fields to the '__all__' special value. You may also blacklist fields by setting
the Meta.exclude attribute.

class UserFilter(FilterSet):
class Meta:

model = User
fields = '__all__'

or
class UserFilter(FilterSet):

class Meta:
model = User
exclude = ['password']

5.3.4 Move FilterSet options to Meta class (#430)

Several FilterSet options have been moved to the Meta class to prevent potential conflicts with declared filter names.
This includes:

• filter_overrides

• strict

• order_by_field

0.x
class UserFilter(FilterSet):

filter_overrides = {}
strict = STRICTNESS.RAISE_VALIDATION_ERROR
order_by_field = 'order'
...

1.0
(continues on next page)

26 Chapter 5. Migration Guide

django-filter Documentation

(continued from previous page)

class UserFilter(FilterSet):
...

class Meta:
filter_overrides = {}
strict = STRICTNESS.RAISE_VALIDATION_ERROR
order_by_field = 'order'

5.3.5 FilterSet ordering replaced by OrderingFilter (#472)

The FilterSet ordering options and methods have been deprecated and replaced by OrderingFilter. Deprecated options
include:

• Meta.order_by

• Meta.order_by_field

These options retain backwards compatibility with the following caveats:

• order_by asserts that Meta.fields is not using the dict syntax. This previously was undefined behavior,
however the migration code is unable to support it.

• Prior, if no ordering was specified in the request, the FilterSet implicitly filtered by the first param in the order_by
option. This behavior cannot be easily emulated but can be fixed by ensuring that the passed in queryset explicitly
calls .order_by().

filterset = MyFilterSet(queryset=MyModel.objects.order_by('field'))

The following methods are deprecated and will raise an assertion if present on the FilterSet:

• .get_order_by()

• .get_ordering_field()

To fix this, simply remove the methods from your class. You can subclass OrderingFilter to migrate any custom
logic.

5.3.6 Deprecated FILTERS_HELP_TEXT_FILTER and FILTERS_HELP_TEXT_EXCLUDE
(#437)

Generated filter labels in 1.0 will be more descriptive, including humanized text about the lookup being performed and
if the filter is an exclusion filter.

These settings will no longer have an effect and will be removed in the 1.0 release.

5.3. Migrating to 1.0 27

django-filter Documentation

5.3.7 DRF filter backend raises TemplateDoesNotExist exception (#562)

Templates are now provided by django-filter. If you are receiving this error, you may need to add 'django_filters'
to your INSTALLED_APPS setting. Alternatively, you could provide your own templates.

28 Chapter 5. Migration Guide

CHAPTER

SIX

FILTERSET OPTIONS

This document provides a guide on using additional FilterSet features.

6.1 Meta options

• model

• fields

• exclude

• form

• filter_overrides

6.1.1 Automatic filter generation with model

The FilterSet is capable of automatically generating filters for a given model’s fields. Similar to Django’s
ModelForm, filters are created based on the underlying model field’s type. This option must be combined with ei-
ther the fields or exclude option, which is the same requirement for Django’s ModelForm class, detailed here.

class UserFilter(django_filters.FilterSet):
class Meta:

model = User
fields = ['username', 'last_login']

6.1.2 Declaring filterable fields

The fields option is combined with model to automatically generate filters. Note that generated filters will not
overwrite filters declared on the FilterSet. The fields option accepts two syntaxes:

• a list of field names

• a dictionary of field names mapped to a list of lookups

class UserFilter(django_filters.FilterSet):
class Meta:

model = User
fields = ['username', 'last_login']

or
(continues on next page)

29

https://docs.djangoproject.com/en/stable/topics/forms/modelforms/#selecting-the-fields-to-use

django-filter Documentation

(continued from previous page)

class UserFilter(django_filters.FilterSet):
class Meta:

model = User
fields = {

'username': ['exact', 'contains'],
'last_login': ['exact', 'year__gt'],

}

The list syntax will create an exact lookup filter for each field included in fields. The dictionary syntax will create
a filter for each lookup expression declared for its corresponding model field. These expressions may include both
transforms and lookups, as detailed in the lookup reference.

Note that it is not necessary to include declared filters in a fields list - doing so will only affect the order in which
fields appear on a FilterSet’s form. Including declarative aliases in a fields dict will raise an error.

class UserFilter(django_filters.FilterSet):
username = filters.CharFilter()
login_timestamp = filters.IsoDateTimeFilter(field_name='last_login')

class Meta:
model = User
fields = {

'username': ['exact', 'contains'],
'login_timestamp': ['exact'],

}

TypeError("'Meta.fields' contains fields that are not defined on this FilterSet: login_
→˓timestamp")

6.1.3 Disable filter fields with exclude

The exclude option accepts a blacklist of field names to exclude from automatic filter generation. Note that this option
will not disable filters declared directly on the FilterSet.

class UserFilter(django_filters.FilterSet):
class Meta:

model = User
exclude = ['password']

6.1.4 Custom Forms using form

The inner Meta class also takes an optional form argument. This is a form class from which FilterSet.form will
subclass. This works similar to the form option on a ModelAdmin.

30 Chapter 6. FilterSet Options

https://docs.djangoproject.com/en/stable/ref/models/lookups/#module-django.db.models.lookups

django-filter Documentation

6.1.5 Customise filter generation with filter_overrides

The inner Meta class also takes an optional filter_overrides argument. This is a map of model fields to filter
classes with options:

class ProductFilter(django_filters.FilterSet):

class Meta:
model = Product
fields = ['name', 'release_date']
filter_overrides = {

models.CharField: {
'filter_class': django_filters.CharFilter,
'extra': lambda f: {

'lookup_expr': 'icontains',
},

},
models.BooleanField: {

'filter_class': django_filters.BooleanFilter,
'extra': lambda f: {

'widget': forms.CheckboxInput,
},

},
}

6.2 Overriding FilterSet methods

When overriding classmethods, calling super(MyFilterSet, cls) may result in a NameError exception. This is
due to the FilterSetMetaclass calling these classmethods before the FilterSet class has been fully created. There
are two recommmended workarounds:

1. If using python 3.6 or newer, use the argumentless super() syntax.

2. For older versions of python, use an intermediate class. Ex:

class Intermediate(django_filters.FilterSet):

@classmethod
def method(cls, arg):

super(Intermediate, cls).method(arg)
...

class ProductFilter(Intermediate):
class Meta:

model = Product
fields = ['...']

6.2. Overriding FilterSet methods 31

django-filter Documentation

6.2.1 filter_for_lookup()

Prior to version 0.13.0, filter generation did not take into account the lookup_expr used. This commonly caused
malformed filters to be generated for ‘isnull’, ‘in’, and ‘range’ lookups (as well as transformed lookups). The current
implementation provides the following behavior:

• ‘isnull’ lookups return a BooleanFilter

• ‘in’ lookups return a filter derived from the CSV-based BaseInFilter.

• ‘range’ lookups return a filter derived from the CSV-based BaseRangeFilter.

If you want to override the filter_class and params used to instantiate filters for a model field, you can override
filter_for_lookup(). Ex:

class ProductFilter(django_filters.FilterSet):
class Meta:

model = Product
fields = {

'release_date': ['exact', 'range'],
}

@classmethod
def filter_for_lookup(cls, f, lookup_type):

override date range lookups
if isinstance(f, models.DateField) and lookup_type == 'range':

return django_filters.DateRangeFilter, {}

use default behavior otherwise
return super().filter_for_lookup(f, lookup_type)

32 Chapter 6. FilterSet Options

CHAPTER

SEVEN

FILTER REFERENCE

This is a reference document with a list of the filters and their arguments.

7.1 Core Arguments

The following are the core arguments that apply to all filters. Note that they are joined to construct the complete lookup
expression that is the left hand side of the ORM .filter() call.

7.1.1 field_name

The name of the model field that is filtered against. If this argument is not provided, it defaults the filter’s attribute
name on the FilterSet class. Field names can traverse relationships by joining the related parts with the ORM lookup
separator (__). e.g., a product’s manufacturer__name.

7.1.2 lookup_expr

The field lookup that should be performed in the filter call. Defaults to exact. The lookup_expr can contain trans-
forms if the expression parts are joined by the ORM lookup separator (__). e.g., filter a datetime by its year part
year__gt.

7.2 Keyword-only Arguments

The following are optional arguments that can be used to modify the behavior of all filters.

7.2.1 label

The label as it will appear in the HTML, analogous to a form field’s label argument. If a label is not provided,
a verbose label will be generated based on the field field_name and the parts of the lookup_expr (see: FIL-
TERS_VERBOSE_LOOKUPS).

33

https://docs.djangoproject.com/en/stable/ref/models/lookups/#module-django.db.models.lookups
https://docs.djangoproject.com/en/stable/ref/models/lookups/#module-django.db.models.lookups
https://docs.djangoproject.com/en/stable/ref/models/querysets/#field-lookups

django-filter Documentation

7.2.2 method

An optional argument that tells the filter how to handle the queryset. It can accept either a callable or the name of a
method on the FilterSet. The callable receives a QuerySet, the name of the model field to filter on, and the value
to filter with. It should return a filtered Queryset.

Note that the value is validated by the Filter.field, so raw value transformation and empty value checking should
be unnecessary.

class F(FilterSet):
"""Filter for Books by if books are published or not"""
published = BooleanFilter(field_name='published_on', method='filter_published')

def filter_published(self, queryset, name, value):
construct the full lookup expression.
lookup = '__'.join([name, 'isnull'])
return queryset.filter(**{lookup: False})

alternatively, you could opt to hardcode the lookup. e.g.,
return queryset.filter(published_on__isnull=False)

class Meta:
model = Book
fields = ['published']

Callables may also be defined out of the class scope.
def filter_not_empty(queryset, name, value):

lookup = '__'.join([name, 'isnull'])
return queryset.filter(**{lookup: False})

class F(FilterSet):
"""Filter for Books by if books are published or not"""
published = BooleanFilter(field_name='published_on', method=filter_not_empty)

class Meta:
model = Book
fields = ['published']

7.2.3 distinct

A boolean that specifies whether the Filter will use distinct on the queryset. This option can be used to eliminate
duplicate results when using filters that span relationships. Defaults to False.

34 Chapter 7. Filter Reference

django-filter Documentation

7.2.4 exclude

A boolean that specifies whether the Filter should use filter or exclude on the queryset. Defaults to False.

7.2.5 required

A boolean that specifies whether the Filter is required or not. Defaults to False.

7.2.6 **kwargs

Any additional keyword arguments are stored as the extra parameter on the filter. They are provided to the accompa-
nying form Field and can be used to provide arguments like choices. Some field-related arguments:

widget

The django.form Widget class which will represent the Filter. In addition to the widgets that are included with
Django that you can use there are additional ones that django-filter provides which may be useful:

• LinkWidget – this displays the options in a manner similar to the way the Django Admin does, as a series of links.
The link for the selected option will have class="selected".

• BooleanWidget – this widget converts its input into Python’s True/False values. It will convert all case variations
of True and False into the internal Python values.

• CSVWidget – this widget expects a comma separated value and converts it into a list of string values. It is expected
that the field class handle a list of values as well as type conversion.

• RangeWidget – this widget is used with RangeFilter to generate two form input elements using a single field.

7.3 ModelChoiceFilter and ModelMultipleChoiceFilter arguments

These arguments apply specifically to ModelChoiceFilter and ModelMultipleChoiceFilter only.

7.3.1 queryset

ModelChoiceFilter and ModelMultipleChoiceFilter require a queryset to operate on which must be passed as
a kwarg.

7.3.2 to_field_name

If you pass in to_field_name (which gets forwarded to the Django field), it will be used also in the default
get_filter_predicate implementation as the model’s attribute.

7.3. ModelChoiceFilter and ModelMultipleChoiceFilter arguments 35

django-filter Documentation

7.4 Filters

7.4.1 CharFilter

This filter does simple character matches, used with CharField and TextField by default.

7.4.2 UUIDFilter

This filter matches UUID values, used with models.UUIDField by default.

7.4.3 BooleanFilter

This filter matches a boolean, either True or False, used with BooleanField and NullBooleanField by default.

7.4.4 ChoiceFilter

This filter matches values in its choices argument. The choicesmust be explicitly passed when the filter is declared
on the FilterSet. For example,

class User(models.Model):
username = models.CharField(max_length=255)
first_name = SubCharField(max_length=100)
last_name = SubSubCharField(max_length=100)

status = models.IntegerField(choices=STATUS_CHOICES, default=0)

STATUS_CHOICES = (
(0, 'Regular'),
(1, 'Manager'),
(2, 'Admin'),

)

class F(FilterSet):
status = ChoiceFilter(choices=STATUS_CHOICES)
class Meta:

model = User
fields = ['status']

ChoiceFilter also has arguments that enable a choice for not filtering, as well as a choice for filtering by None values.
Each of the arguments have a corresponding global setting (Settings Reference).

• empty_label: The display label to use for the select choice to not filter. The choice may be disabled by setting
this argument to None. Defaults to FILTERS_EMPTY_CHOICE_LABEL.

• null_label: The display label to use for the choice to filter by None values. The choice may be disabled by
setting this argument to None. Defaults to FILTERS_NULL_CHOICE_LABEL.

• null_value: The special value to match to enable filtering by None values. This value defaults
FILTERS_NULL_CHOICE_VALUE and needs to be a non-empty value ('', None, [], (), {}).

36 Chapter 7. Filter Reference

django-filter Documentation

7.4.5 TypedChoiceFilter

The same as ChoiceFilter with the added possibility to convert value to match against. This could be done by using
coerce parameter. An example use-case is limiting boolean choices to match against so only some predefined strings
could be used as input of a boolean filter:

import django_filters
from distutils.util import strtobool

BOOLEAN_CHOICES = (('false', 'False'), ('true', 'True'),)

class YourFilterSet(django_filters.FilterSet):
...
flag = django_filters.TypedChoiceFilter(choices=BOOLEAN_CHOICES,

coerce=strtobool)

7.4.6 MultipleChoiceFilter

The same as ChoiceFilter except the user can select multiple choices and the filter will form the OR of these choices
by default to match items. The filter will form the AND of the selected choices when the conjoined=True argument
is passed to this class.

Multiple choices are represented in the query string by reusing the same key with different values (e.g. ‘’?sta-
tus=Regular&status=Admin”).

distinct defaults to True as to-many relationships will generally require this.

Advanced Use: Depending on your application logic, when all or no choices are selected, filtering may be a noop. In
this case you may wish to avoid the filtering overhead, particularly of the distinct call.

Set always_filter to False after instantiation to enable the default is_noop test.

Override is_noop if you require a different test for your application.

7.4.7 TypedMultipleChoiceFilter

Like MultipleChoiceFilter, but in addition accepts the coerce parameter, as in TypedChoiceFilter.

7.4.8 DateFilter

Matches on a date. Used with DateField by default.

7.4.9 TimeFilter

Matches on a time. Used with TimeField by default.

7.4. Filters 37

django-filter Documentation

7.4.10 DateTimeFilter

Matches on a date and time. Used with DateTimeField by default.

7.4.11 IsoDateTimeFilter

Uses IsoDateTimeField to support filtering on ISO 8601 formatted dates, as are often used in APIs, and are employed
by default by Django REST Framework.

Example:

class F(FilterSet):
"""Filter for Books by date published, using ISO 8601 formatted dates"""
published = IsoDateTimeFilter()

class Meta:
model = Book
fields = ['published']

7.4.12 DurationFilter

Matches on a duration. Used with DurationField by default.

Supports both Django (‘%d %H:%M:%S.%f’) and ISO 8601 formatted durations (but only the sections that are accepted
by Python’s timedelta, so no year, month, and week designators, e.g. ‘P3DT10H22M’).

7.4.13 ModelChoiceFilter

Similar to a ChoiceFilter except it works with related models, used for ForeignKey by default.

If automatically instantiated, ModelChoiceFilter will use the default QuerySet for the related field. If manually
instantiated you must provide the queryset kwarg.

Example:

class F(FilterSet):
"""Filter for books by author"""
author = ModelChoiceFilter(queryset=Author.objects.all())

class Meta:
model = Book
fields = ['author']

The queryset argument also supports callable behavior. If a callable is passed, it will be invoked with Filterset.
request as its only argument. This allows you to easily filter by properties on the request object without having to
override the FilterSet.__init__.

Note: You should expect that the request object may be None.

38 Chapter 7. Filter Reference

django-filter Documentation

def departments(request):
if request is None:

return Department.objects.none()

company = request.user.company
return company.department_set.all()

class EmployeeFilter(filters.FilterSet):
department = filters.ModelChoiceFilter(queryset=departments)
...

7.4.14 ModelMultipleChoiceFilter

Similar to a MultipleChoiceFilter except it works with related models, used for ManyToManyField by default.

As with ModelChoiceFilter, if automatically instantiated, ModelMultipleChoiceFilter will use the de-
fault QuerySet for the related field. If manually instantiated you must provide the queryset kwarg. Like
ModelChoiceFilter, the queryset argument has callable behavior.

To use a custom field name for the lookup, you can use to_field_name:

class FooFilter(BaseFilterSet):
foo = django_filters.filters.ModelMultipleChoiceFilter(

field_name='attr__uuid',
to_field_name='uuid',
queryset=Foo.objects.all(),

)

If you want to use a custom queryset, e.g. to add annotated fields, this can be done as follows:

class MyMultipleChoiceFilter(django_filters.ModelMultipleChoiceFilter):
def get_filter_predicate(self, v):

return {'annotated_field': v.annotated_field}

def filter(self, qs, value):
if value:

qs = qs.annotate_with_custom_field()
qs = super().filter(qs, value)

return qs

foo = MyMultipleChoiceFilter(
to_field_name='annotated_field',
queryset=Model.objects.annotate_with_custom_field(),

)

The annotate_with_custom_field method would be defined through a custom QuerySet, which then gets used as
the model’s manager:

class CustomQuerySet(models.QuerySet):
def annotate_with_custom_field(self):

return self.annotate(
custom_field=Case(

When(foo__isnull=False,
(continues on next page)

7.4. Filters 39

django-filter Documentation

(continued from previous page)

then=F('foo__uuid')),
When(bar__isnull=False,

then=F('bar__uuid')),
default=None,

),
)

class MyModel(models.Model):
objects = CustomQuerySet.as_manager()

7.4.15 NumberFilter

Filters based on a numerical value, used with IntegerField, FloatField, and DecimalField by default.

NumberFilter.get_max_validator()

Return a MaxValueValidator instance that will be added to field.validators. By default uses a limit value
of 1e50. Return None to disable maximum value validation.

7.4.16 NumericRangeFilter

Filters where a value is between two numerical values, or greater than a minimum or less than a maximum where
only one limit value is provided. This filter is designed to work with the Postgres Numerical Range Fields, including
IntegerRangeField, BigIntegerRangeField and FloatRangeField (available since Django 1.8). The default
widget used is the RangeField.

Regular field lookups are available in addition to several containment lookups, including overlap, contains, and
contained_by. More details in the Django docs.

If the lower limit value is provided, the filter automatically defaults to startswith as the lookup and endswith if
only the upper limit value is provided.

7.4.17 RangeFilter

Filters where a value is between two numerical values, or greater than a minimum or less than a maximum where only
one limit value is provided.

class F(FilterSet):
"""Filter for Books by Price"""
price = RangeFilter()

class Meta:
model = Book
fields = ['price']

qs = Book.objects.all().order_by('title')

Range: Books between 5€ and 15€
f = F({'price_min': '5', 'price_max': '15'}, queryset=qs)

Min-Only: Books costing more the 11€
(continues on next page)

40 Chapter 7. Filter Reference

https://docs.djangoproject.com/en/stable/ref/contrib/postgres/fields/#querying-range-fields

django-filter Documentation

(continued from previous page)

f = F({'price_min': '11'}, queryset=qs)

Max-Only: Books costing less than 19€
f = F({'price_max': '19'}, queryset=qs)

7.4.18 DateRangeFilter

Filter similar to the admin changelist date one, it has a number of common selections for working with date fields.

7.4.19 DateFromToRangeFilter

Similar to a RangeFilter except it uses dates instead of numerical values. It can be used with DateField. It also
works with DateTimeField, but takes into consideration only the date.

Example of using the DateField field:

class Comment(models.Model):
date = models.DateField()
time = models.TimeField()

class F(FilterSet):
date = DateFromToRangeFilter()

class Meta:
model = Comment
fields = ['date']

Range: Comments added between 2016-01-01 and 2016-02-01
f = F({'date_after': '2016-01-01', 'date_before': '2016-02-01'})

Min-Only: Comments added after 2016-01-01
f = F({'date_after': '2016-01-01'})

Max-Only: Comments added before 2016-02-01
f = F({'date_before': '2016-02-01'})

Note: When filtering ranges that occurs on DST transition dates DateFromToRangeFilter will use the first valid
hour of the day for start datetime and the last valid hour of the day for end datetime. This is OK for most applications,
but if you want to customize this behavior you must extend DateFromToRangeFilter and make a custom field for it.

Warning: If you’re using Django prior to 1.9 you may hit AmbiguousTimeError or NonExistentTimeError
when start/end date matches DST start/end respectively. This occurs because versions before 1.9 don’t allow to
change the DST behavior for making a datetime aware.

Example of using the DateTimeField field:

7.4. Filters 41

django-filter Documentation

class Article(models.Model):
published = models.DateTimeField()

class F(FilterSet):
published = DateFromToRangeFilter()

class Meta:
model = Article
fields = ['published']

Article.objects.create(published='2016-01-01 8:00')
Article.objects.create(published='2016-01-20 10:00')
Article.objects.create(published='2016-02-10 12:00')

Range: Articles published between 2016-01-01 and 2016-02-01
f = F({'published_after': '2016-01-01', 'published_before': '2016-02-01'})
assert len(f.qs) == 2

Min-Only: Articles published after 2016-01-01
f = F({'published_after': '2016-01-01'})
assert len(f.qs) == 3

Max-Only: Articles published before 2016-02-01
f = F({'published_before': '2016-02-01'})
assert len(f.qs) == 2

7.4.20 DateTimeFromToRangeFilter

Similar to a RangeFilter except it uses datetime format values instead of numerical values. It can be used with
DateTimeField.

Example:

class Article(models.Model):
published = models.DateTimeField()

class F(FilterSet):
published = DateTimeFromToRangeFilter()

class Meta:
model = Article
fields = ['published']

Article.objects.create(published='2016-01-01 8:00')
Article.objects.create(published='2016-01-01 9:30')
Article.objects.create(published='2016-01-02 8:00')

Range: Articles published 2016-01-01 between 8:00 and 10:00
f = F({'published_after': '2016-01-01 8:00', 'published_before': '2016-01-01 10:00'})
assert len(f.qs) == 2

Min-Only: Articles published after 2016-01-01 8:00
(continues on next page)

42 Chapter 7. Filter Reference

django-filter Documentation

(continued from previous page)

f = F({'published_after': '2016-01-01 8:00'})
assert len(f.qs) == 3

Max-Only: Articles published before 2016-01-01 10:00
f = F({'published_before': '2016-01-01 10:00'})
assert len(f.qs) == 2

7.4.21 IsoDateTimeFromToRangeFilter

Similar to a RangeFilter except it uses ISO 8601 formatted values instead of numerical values. It can be used with
IsoDateTimeField.

Example:

class Article(models.Model):
published = django_filters.IsoDateTimeField()

class F(FilterSet):
published = IsoDateTimeFromToRangeFilter()

class Meta:
model = Article
fields = ['published']

Article.objects.create(published='2016-01-01T8:00:00+01:00')
Article.objects.create(published='2016-01-01T9:30:00+01:00')
Article.objects.create(published='2016-01-02T8:00:00+01:00')

Range: Articles published 2016-01-01 between 8:00 and 10:00
f = F({'published_after': '2016-01-01T8:00:00+01:00', 'published_before': '2016-01-
→˓01T10:00:00+01:00'})
assert len(f.qs) == 2

Min-Only: Articles published after 2016-01-01 8:00
f = F({'published_after': '2016-01-01T8:00:00+01:00'})
assert len(f.qs) == 3

Max-Only: Articles published before 2016-01-01 10:00
f = F({'published_before': '2016-01-01T10:00:00+0100'})
assert len(f.qs) == 2

7.4.22 TimeRangeFilter

Similar to a RangeFilter except it uses time format values instead of numerical values. It can be used with
TimeField.

Example:

class Comment(models.Model):
date = models.DateField()
time = models.TimeField()

(continues on next page)

7.4. Filters 43

django-filter Documentation

(continued from previous page)

class F(FilterSet):
time = TimeRangeFilter()

class Meta:
model = Comment
fields = ['time']

Range: Comments added between 8:00 and 10:00
f = F({'time_after': '8:00', 'time_before': '10:00'})

Min-Only: Comments added after 8:00
f = F({'time_after': '8:00'})

Max-Only: Comments added before 10:00
f = F({'time_before': '10:00'})

7.4.23 AllValuesFilter

This is a ChoiceFilter whose choices are the current values in the database. So if in the DB for the given field you
have values of 5, 7, and 9 each of those is present as an option. This is similar to the default behavior of the admin.

7.4.24 AllValuesMultipleFilter

This is a MultipleChoiceFilter whose choices are the current values in the database. So if in the DB for the given
field you have values of 5, 7, and 9 each of those is present as an option. This is similar to the default behavior of the
admin.

7.4.25 LookupChoiceFilter

A combined filter that allows users to select the lookup expression from a dropdown.

• lookup_choices is an optional argument that accepts multiple input formats, and is ultimately normalized as
the choices used in the lookup dropdown. See .get_lookup_choices() for more information.

• field_class is an optional argument that allows you to set the inner form field class used to validate the value.
Default: forms.CharField

ex:

price = django_filters.LookupChoiceFilter(
field_class=forms.DecimalField,
lookup_choices=[

('exact', 'Equals'),
('gt', 'Greater than'),
('lt', 'Less than'),

]
)

44 Chapter 7. Filter Reference

django-filter Documentation

7.4.26 BaseInFilter

This is a base class used for creating IN lookup filters. It is expected that this filter class is used in conjunction with
another filter class, as this class only validates that the incoming value is comma-separated. The secondary filter is
then used to validate the individual values.

Example:

class NumberInFilter(BaseInFilter, NumberFilter):
pass

class F(FilterSet):
id__in = NumberInFilter(field_name='id', lookup_expr='in')

class Meta:
model = User

User.objects.create(username='alex')
User.objects.create(username='jacob')
User.objects.create(username='aaron')
User.objects.create(username='carl')

In: User with IDs 1 and 3.
f = F({'id__in': '1,3'})
assert len(f.qs) == 2

7.4.27 BaseRangeFilter

This is a base class used for creating RANGE lookup filters. It behaves identically to BaseInFilterwith the exception
that it expects only two comma-separated values.

Example:

class NumberRangeFilter(BaseRangeFilter, NumberFilter):
pass

class F(FilterSet):
id__range = NumberRangeFilter(field_name='id', lookup_expr='range')

class Meta:
model = User

User.objects.create(username='alex')
User.objects.create(username='jacob')
User.objects.create(username='aaron')
User.objects.create(username='carl')

Range: User with IDs between 1 and 3.
f = F({'id__range': '1,3'})
assert len(f.qs) == 3

7.4. Filters 45

django-filter Documentation

7.4.28 OrderingFilter

Enable queryset ordering. As an extension of ChoiceFilter it accepts two additional arguments that are used to build
the ordering choices.

• fields is a mapping of {model field name: parameter name}. The parameter names are exposed in the choices
and mask/alias the field names used in the order_by() call. Similar to field choices, fields accepts the ‘list
of two-tuples’ syntax that retains order. fields may also just be an iterable of strings. In this case, the field
names simply double as the exposed parameter names.

• field_labels is an optional argument that allows you to customize the display label for the corresponding
parameter. It accepts a mapping of {field name: human readable label}. Keep in mind that the key is the field
name, and not the exposed parameter name.

class UserFilter(FilterSet):
account = CharFilter(field_name='username')
status = NumberFilter(field_name='status')

o = OrderingFilter(
tuple-mapping retains order
fields=(

('username', 'account'),
('first_name', 'first_name'),
('last_name', 'last_name'),

),

labels do not need to retain order
field_labels={

'username': 'User account',
}

)

class Meta:
model = User
fields = ['first_name', 'last_name']

>>> UserFilter().filters['o'].field.choices
[

('account', 'User account'),
('-account', 'User account (descending)'),
('first_name', 'First name'),
('-first_name', 'First name (descending)'),
('last_name', 'Last name'),
('-last_name', 'Last name (descending)'),

]

Additionally, you can just provide your own choices if you require explicit control over the exposed options. For
example, when you might want to disable descending sort options.

class UserFilter(FilterSet):
account = CharFilter(field_name='username')
status = NumberFilter(field_name='status')

o = OrderingFilter(
choices=(

(continues on next page)

46 Chapter 7. Filter Reference

django-filter Documentation

(continued from previous page)

('account', 'Account'),
),
fields={

'username': 'account',
},

)

This filter is also CSV-based, and accepts multiple ordering params. The default select widget does not enable the use
of this, but it is useful for APIs. SelectMultiple widgets are not compatible, given that they are not able to retain
selection order.

Adding Custom filter choices

If you wish to sort by non-model fields, you’ll need to add custom handling to an OrderingFilter subclass. For
example, if you want to sort by a computed ‘relevance’ factor, you would need to do something like the following:

class CustomOrderingFilter(django_filters.OrderingFilter):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.extra['choices'] += [

('relevance', 'Relevance'),
('-relevance', 'Relevance (descending)'),

]

def filter(self, qs, value):
OrderingFilter is CSV-based, so `value` is a list
if any(v in ['relevance', '-relevance'] for v in value):

sort queryset by relevance
return ...

return super().filter(qs, value)

7.4. Filters 47

django-filter Documentation

48 Chapter 7. Filter Reference

CHAPTER

EIGHT

FIELD REFERENCE

8.1 IsoDateTimeField

Extends django.forms.DateTimeField to allow parsing ISO 8601 formated dates, in addition to existing formats

Defines a class level attribute ISO_8601 as constant for the format.

Sets input_formats = [ISO_8601] — this means that by default IsoDateTimeField will only parse ISO 8601
formated dates.

You may set input_formats to your list of required formats as per the DateTimeField Docs, using the ISO_8601
class level attribute to specify the ISO 8601 format.

f = IsoDateTimeField()
f.input_formats = [IsoDateTimeField.ISO_8601] + DateTimeField.input_formats

49

https://docs.djangoproject.com/en/stable/ref/forms/fields/#django.forms.DateTimeField.input_formats

django-filter Documentation

50 Chapter 8. Field Reference

CHAPTER

NINE

WIDGET REFERENCE

This is a reference document with a list of the provided widgets and their arguments.

9.1 LinkWidget

This widget renders each option as a link, instead of an actual <input>. It has one method that you can override for
additional customizability. option_string() should return a string with 3 Python keyword argument placeholders:

1. attrs: This is a string with all the attributes that will be on the final <a> tag.

2. query_string: This is the query string for use in the href option on the <a> element.

3. label: This is the text to be displayed to the user.

9.2 BooleanWidget

This widget converts its input into Python’s True/False values. It will convert all case variations of True and False
into the internal Python values. To use it, pass this into the widgets argument of the BooleanFilter:

active = BooleanFilter(widget=BooleanWidget())

9.3 CSVWidget

This widget expects a comma separated value and converts it into a list of string values. It is expected that the field
class handle a list of values as well as type conversion.

9.4 RangeWidget

This widget is used with RangeFilter and its subclasses. It generates two form input elements which generally act as
start/end values in a range. Under the hood, it is Django’s forms.TextInput widget and excepts the same arguments
and values. To use it, pass it to widget argument of a RangeField:

date_range = DateFromToRangeFilter(widget=RangeWidget(attrs={'placeholder': 'YYYY/MM/DD'}
→˓))

51

django-filter Documentation

9.5 SuffixedMultiWidget

Extends Django’s builtin MultiWidget to append custom suffixes instead of indices. For example, take a range widget
that accepts minimum and maximum bounds. By default, the resulting query params would look like the following:

GET /products?price_0=10&price_1=25 HTTP/1.1

By using SuffixedMultiWidget instead, you can provide human-friendly suffixes.

class RangeWidget(SuffixedMultiWidget):
suffixes = ['min', 'max']

The query names are now a little more ergonomic.

GET /products?price_min=10&price_max=25 HTTP/1.1

52 Chapter 9. Widget Reference

CHAPTER

TEN

SETTINGS REFERENCE

Here is a list of all available settings of django-filters and their default values. All settings are prefixed with FILTERS_,
although this is a bit verbose it helps to make it easy to identify these settings.

10.1 FILTERS_DEFAULT_LOOKUP_EXPR

Default: 'exact'

Set the default lookup expression to be generated, when none is defined.

10.2 FILTERS_EMPTY_CHOICE_LABEL

Default: '---------'

Set the default value for ChoiceFilter.empty_label. You may disable the empty choice by setting this to None.

10.3 FILTERS_NULL_CHOICE_LABEL

Default: None

Set the default value for ChoiceFilter.null_label. You may enable the null choice by setting a non-None value.

10.4 FILTERS_NULL_CHOICE_VALUE

Default: 'null'

Set the default value for ChoiceFilter.null_value. You may want to change this value if the default 'null' string
conflicts with an actual choice.

53

django-filter Documentation

10.5 FILTERS_DISABLE_HELP_TEXT

Default: False

Some filters provide informational help_text. For example, csv-based filters (filters.BaseCSVFilter) inform
users that “Multiple values may be separated by commas”.

You may set this to True to disable the help_text for all filters, removing the text from the rendered form’s output.

10.6 FILTERS_VERBOSE_LOOKUPS

Note: This is considered an advanced setting and is subject to change.

Default:

refer to 'django_filters.conf.DEFAULTS'
'VERBOSE_LOOKUPS': {

'exact': _(''),
'iexact': _(''),
'contains': _('contains'),
'icontains': _('contains'),
...

}

This setting controls the verbose output for generated filter labels. Instead of getting expression parts such as “lt” and
“contained_by”, the verbose label would contain “is less than” and “is contained by”. Verbose output may be disabled
by setting this to a falsy value.

This setting also accepts callables. The callable should not require arguments and should return a dictionary. This is
useful for extending or overriding the default terms without having to copy the entire set of terms to your settings. For
example, you could add verbose output for “exact” lookups.

settings.py
def FILTERS_VERBOSE_LOOKUPS():

from django_filters.conf import DEFAULTS

verbose_lookups = DEFAULTS['VERBOSE_LOOKUPS'].copy()
verbose_lookups.update({

'exact': 'is equal to',
})
return verbose_lookups

54 Chapter 10. Settings Reference

CHAPTER

ELEVEN

RUNNING THE TEST SUITE

The easiest way to run the django-filter tests is to check out the source code and create a virtualenv where you can
install the test dependencies. Django-filter uses a custom test runner to configure the environment, so a wrapper script
is available to set up and run the test suite.

Note: The following assumes you have virtualenv and git installed.

11.1 Clone the repository

Get the source code using the following command:

$ git clone https://github.com/carltongibson/django-filter.git

Switch to the django-filter directory:

$ cd django-filter

11.2 Set up the virtualenv

Create a new virtualenv to run the test suite in:

$ virtualenv venv

Then activate the virtualenv and install the test requirements:

$ source venv/bin/activate
$ pip install -r requirements/test.txt

55

https://virtualenv.pypa.io/en/stable/
https://git-scm.com

django-filter Documentation

11.3 Execute the test runner

Run the tests with the runner script:

$ python runtests.py

11.4 Test all supported versions

You can also use the excellent tox testing tool to run the tests against all supported versions of Python and Django.
Install tox, and then simply run:

$ pip install tox
$ tox

11.5 Housekeeping

The isort utility is used to maintain module imports. You can either test the module imports with the appropriate tox
env, or with isort directly.

$ pip install tox
$ tox -e isort

or

$ pip install isort
$ isort --check --diff django_filters tests

To sort the imports, simply remove the --check-only option.

$ isort --recursive django_filters tests

56 Chapter 11. Running the Test Suite

INDEX

G
get_max_validator() (NumberFilter method), 40

57

	Installation
	Requirements

	Getting Started
	The model
	The filter
	Declaring filters
	Generating filters with Meta.fields
	Overriding default filters

	Request-based filtering
	Filtering the primary .qs
	Filtering the related queryset for ModelChoiceFilter

	Customize filtering with Filter.method

	The view
	The URL conf
	The template
	Generic view & configuration

	Integration with DRF
	Quickstart
	Adding a FilterSet with filterset_class
	Using the filterset_fields shortcut
	Overriding FilterSet creation
	Schema Generation with Core API and Open API
	Crispy Forms
	Additional FilterSet Features

	Tips and Solutions
	Common problems for declared filters
	Filter field_name and lookup_expr not configured
	Missing lookup_expr for text search filters
	Filter and lookup expression mismatch (in, range, isnull)

	Filtering by empty values
	Filtering by null values
	Solution 1: Using a BooleanFilter with isnull
	Solution 2: Using ChoiceFilter’s null choice
	Solution 3: Combining fields w/ MultiValueField

	Filtering by an empty string
	Solution 1: Magic values
	Solution 2: Empty string filter

	Filtering by relative times
	Using initial values as defaults
	Adding model field help_text to filters

	Migration Guide
	Enabling warnings
	Migrating to 2.0
	Filter.lookup_expr list form removed (#851)
	FilterSet filter_for_reverse_field removed (#915)
	View attributes renamed (#867)
	FilterSet Meta.together option removed (#791)
	FilterSet “strictness” handling moved to view (#788)
	Filter.name renamed to Filter.field_name (#792)
	Filter.widget and Filter.required removed (#734)
	MultiWidget replaced by SuffixedMultiWidget (#770)
	Filters like RangeFilter, DateRangeFilter, DateTimeFromToRangeFilter... (#770)

	Migrating to 1.0
	MethodFilter and Filter.action replaced by Filter.method (#382)
	QuerySet methods are no longer proxied (#440)
	Filters no longer autogenerated when Meta.fields is not specified (#450)
	Move FilterSet options to Meta class (#430)
	FilterSet ordering replaced by OrderingFilter (#472)
	Deprecated FILTERS_HELP_TEXT_FILTER and FILTERS_HELP_TEXT_EXCLUDE (#437)
	DRF filter backend raises TemplateDoesNotExist exception (#562)

	FilterSet Options
	Meta options
	Automatic filter generation with model
	Declaring filterable fields
	Disable filter fields with exclude
	Custom Forms using form
	Customise filter generation with filter_overrides

	Overriding FilterSet methods
	filter_for_lookup()

	Filter Reference
	Core Arguments
	field_name
	lookup_expr

	Keyword-only Arguments
	label
	method
	distinct
	exclude
	required
	**kwargs
	widget

	ModelChoiceFilter and ModelMultipleChoiceFilter arguments
	queryset
	to_field_name

	Filters
	CharFilter
	UUIDFilter
	BooleanFilter
	ChoiceFilter
	TypedChoiceFilter
	MultipleChoiceFilter
	TypedMultipleChoiceFilter
	DateFilter
	TimeFilter
	DateTimeFilter
	IsoDateTimeFilter
	DurationFilter
	ModelChoiceFilter
	ModelMultipleChoiceFilter
	NumberFilter
	NumericRangeFilter
	RangeFilter
	DateRangeFilter
	DateFromToRangeFilter
	DateTimeFromToRangeFilter
	IsoDateTimeFromToRangeFilter
	TimeRangeFilter
	AllValuesFilter
	AllValuesMultipleFilter
	LookupChoiceFilter
	BaseInFilter
	BaseRangeFilter
	OrderingFilter
	Adding Custom filter choices

	Field Reference
	IsoDateTimeField

	Widget Reference
	LinkWidget
	BooleanWidget
	CSVWidget
	RangeWidget
	SuffixedMultiWidget

	Settings Reference
	FILTERS_DEFAULT_LOOKUP_EXPR
	FILTERS_EMPTY_CHOICE_LABEL
	FILTERS_NULL_CHOICE_LABEL
	FILTERS_NULL_CHOICE_VALUE
	FILTERS_DISABLE_HELP_TEXT
	FILTERS_VERBOSE_LOOKUPS

	Running the Test Suite
	Clone the repository
	Set up the virtualenv
	Execute the test runner
	Test all supported versions
	Housekeeping

	Index

